
 Page i of i

 Embedded Room-By-Room

Heating Control System

 Mr Michael John Curry

 EO320

 Mr Chris S Knight

 24 April 2007

Final year report submitted in partial fulfilment of the requirements for the degree of:
Bachelor of Engineering (Honours) in Electronic & Computer Engineering

 Page i of x

���������	���������	���������	���������	

I hereby certify that the attached report is my own work except where otherwise

indicated. I have identified my sources of information; in particular I have put in

quotation marks any passages that have been quoted word-for-word, and identified

their origins.

Signed …………………………………………………………………………

Date ……………………………………………………………………………

 Page ii of x

� ��	��� ��	��� ��	��� ��	��

This project looks at an implementation of an ethernet local area network using

embedded microchip ‘PIC’ microcontrollers, whereby each room in a building is

thermally controlled by an embedded ethernet node. Each room node is then in turn

controlled by a central control node which also hosts an embedded web server,

allowing a user to easily control the temperature of each room through an internet

browser.

This dissertation accompanies the hardware and software implementation of two

embedded microcontroller ethernet nodes, whereby each can manipulate a binary

heater output, to meet a user specified target temperature by reading a thermal sensor.

One of these nodes has also been configured to be able to ‘discover’ the other node on

the network and send it a new target temperature, through an HTML interface (aka.

web page).

This project covers both the design of the hardware and software, which must

function closely together for an embedded solution to work.

 Page iii of x

� ������ ������ ������ �����

Disclaimer .. i

Abstract ... ii

Contents ... iii

List of Figures .. vi

List of Tables .. vii

Glossary ... viii

Acknowledgements... x

1 Introduction...1

2 Project Aims, Objectives and Technical Overview ..3

2.1 Aims..3

2.2 Objectives ...3

2.3 Technical Overview..3

3 Background and Research...5

3.1 Embedded Web Servers ..5

3.2 Review of previous embedded-ethernet projects ..5

3.3 In-Circuit Debugging and Programming ..6

3.4 Microchip ‘MCC18’ C compiler ..7

3.5 ISO-OSI 7 layer reference model & TCP/IP stack model7

3.6 Transmission Control Protocol / Internet Protocol suite.................................8

3.6.1 Internet Protocol Version 4 (IPv4, OSI layer 3) – RFC 791.....................8

3.6.2 Transmission Control Protocol over IPv4 (TCP, OSI layers 4&5) – RFC

793...9

3.6.3 User Datagram Protocol (UDP, OSI Layer 4) – RFC 768......................10

3.7 Microchip TCP/IP stack..11

4 Design of artefact ..14

4.1 Possible room-node network mediums...14

4.1.1 X.10...14

4.1.2 CAN (Controller Area Network) ..14

4.1.3 IEEE 802.3 Ethernet (wired)...14

4.1.4 IEEE 802.11 Ethernet (WiFi) ...15

4.1.5 Conclusion ..15

 Page iv of x

4.2 Physical ethernet connections ...16

4.2.1 Specification outlined within ENC28J60 data sheet...............................16

4.3 Selection of a suitable microcontroller ...17

4.4 Thermal sensing ..17

4.5 Mains switching ..18

4.6 Miscellaneous ...18

4.7 In-circuit serial programming / debugging ...19

4.8 Circuit Block Diagram..19

4.9 Design & modification of TCP/IP stack modules...20

4.9.1 Modification of microchip’s existing modules20

4.9.1.1 Telnet ..20

4.9.1.2 HTTP...21

4.9.1.3 HTTP CGI...21

4.9.1.4 HTTP commands ..22

4.9.2 New stack modules written specifically for the project..........................23

4.9.2.1 GetTemp – Read temperature from TC77 SPI thermal sensor23

4.9.2.2 SendTemp – Open connection to remote node to update target

temperature and read remote temperature...23

4.9.2.3 TempControl – Controls the state of the heater output.....................24

4.9.2.4 Socket – Allow the central node to update the local node’s target

temperature and read the current temperature24

4.9.2.5 Discover – Allow the discovery of other microchip nodes in the IP

subnet, presumably acting as room nodes...25

4.9.3 Additional functions written for the task ..26

4.9.3.1 Converting a float to a string (within the range -99.9 to +99.9)26

4.9.3.2 Converting a user entered IP address decimal dotted quad string to a

32-bit hexadecimal representation ..27

4.9.3.3 Padding of a 16 byte string with 0x20 (space) if less than 15

characters stored..28

4.9.3.4 Reading and Writing Internal EEPROM (single char)29

4.9.4 Bugs within v4.00RC (beta) of the TCP/IP stack30

4.9.4.1 TCP socket pointer error ...30

4.9.4.2 Intermittent UDP error ..31

5 Testing of programme and development of artefact ...32

 Page v of x

5.1 Major Problems encountered ..32

5.1.1 Problem 1 ..32

5.1.1.1 Symptoms ...32

5.1.1.2 Cause / Solution ..32

5.1.2 Problem 2 ..33

5.1.2.1 Symptoms ...33

5.1.2.2 Cause / Solution ..33

5.2 Debugging using microchip ICD2..34

5.3 Debugging of glitches in code written ..35

5.3.1 Reading Temperature..35

5.3.2 Telnet ..35

5.3.3 Internal EEPROM read/writing ..36

5.3.4 Custom socket for updating of target temperature set point36

5.3.5 Client for changing set point on remote node...36

5.3.6 HTTP...36

5.3.7 Remote node discovery...37

5.4 Testing of temperature control..38

6 Costing ..39

7 Conclusions...40

8 Suggestions for Further Work or Recommendations..41

8.1 Specific to this application..41

8.2 Applicable to a generic PIC ethernet project ..41

8.3 URL for future project students interested in this project.............................41

9 References...42

10 Bibliography ...43

11 Appendices..44

11.1 Appendix A – 5v relay suitability testing ...44

11.2 Appendix B – Room Node Circuit Diagram...45

11.3 Appendix C – GetTemp.c listing ..47

11.4 Appendix D – SendTemp.c listing..49

11.5 Appendix E – TempControl.c listing ..53

11.6 Appendix F – Socket.c listing...54

11.7 Appendix G – discover.c listing..57

11.8 Appendix H – Project Gantt Chart..61

 Page vi of x

���
��
����	�����
��
����	�����
��
����	�����
��
����	��

Figure 1 - Stack structure chart ..12

Figure 2 - Stack flowchart..13

Figure 3 - ENC28J60 Ethernet Termination and External Connections [MC1]..........16

Figure 4 - Collector follower transistor buffer...18

Figure 5 - ICD2 RJ-12 Pinout..19

Figure 6 - ICD2 PIC connections...19

Figure 7 - Circuit Block Diagram ..19

Figure 8 – Test-bed, with heat source off ..38

Figure 9 – Test-bed, with heat source on...38

 Page vii of x

���
��
���������
��
���������
��
���������
��
������

Table 1 - Comparison of Projects ..5

Table 2 - Comparison of ISO-OSI and TCP/IP layers...8

Table 3 - X.10 advantages / disadvantages..14

Table 4 - CAN advantages / disadvantages ...14

Table 5 - Ethernet advantages / disadvantages ..15

Table 6 - WiFi advantages / disadvantages..15

 Page viii of x

� �����	�� �����	�� �����	�� �����	�

Term Definition
\n or lf ASCII character for line feed (hex code 0x0d)

\r or cr ASCII character for carriage return (hex code 0x0a)

AJAX Asynchronous JavaScript & XML

ASCII American Standard Code for Information Interchange

CAN Controller Area Network

CGI Common Gateway Interface

CSS Cascading Style Sheet

E2PROM See EEPROM

EEPROM Electronically Erasable Programmable Read Only Memory

EMI Electro-Magnetic Interference

HTML Hyper-Text Markup Language

HTTP Hyper-Text Transfer Protocol

IC Integrated Circuit

ICD In-Circuit Debugger / Debugging

ICSP In-Circuit Serial Programming

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

ISO International Standards Organisation

MCC18 Microchip C compiler for 18 series PICs

MCU Microcontroller Unit

NIC Network Interface Controller

OSI Open Systems Interconnect

PCB Printed Circuit Board

RFC Request for comments

RM Reference Model

RTC Real Time Clock

RX Receive / Receiver

 Page ix of x

Term Definition
SPDIP Slim Plastic Dual In-line Package

SPI Serial Peripheral Interface

TCP Transmission Control Protocol

TX Transmit / Transmitter

 Page x of x

� ����� ���������� ����� ���������� ����� ���������� ����� ���������

I would like to firstly thank the dedication of the microchip support team for all their

hard work in trying to solve the various problems I had with their TCP/IP stack.

Secondly, I would like to thank the staff of the University of Brighton for their

support throughout the project.

 Page 1 of 61

���� ��	���������	���������	���������	�������

With the ever increasing amounts of integration of microprocessors and

microcontrollers in electrical goods in today’s world and the ever growing adoption of

cheap ‘smart home’ solutions, it makes sense to integrate some form of processing

power into the heaters in each room of an house. With the popularity of ethernet

(IEEE 802.3) as an home networking medium, it makes sense to use this technology.

There are several ways this could be achieved, even in an home without any wired

ethernet cables. Two existing technologies are WiFi (IEEE 802.11) and ethernet over

mains (known by several names by different manufactures). The second of these two

would be very easy to use, as it provides a RJ-45 socket for the network device to use,

whereas the second option would involve having to integrate the WiFi receiver /

transmitter into each node, which is beyond the scope of this project.

A project involving several PIC microcontrollers talking to each other over ethernet

has not been attempted before by the university, although one PIC acting as a

standalone web server, with controls for various input and output transducers, has

been completed successfully but used a different network interface controller (NIC).

However, since that project was completed, the microchip TCP/IP stack has gone

through several revisions with the latest being v4.00RC (beta), which was supplied

through support.microchip.com whilst having trouble trying to get various parts of the

stack to work properly.

Room-by-room temperature control has been chosen as the purpose for these

interconnected microcontrollers, due to the current popularity of energy saving,

‘green’ technology. By controlling the temperature of each room individually, rather

than a single thermostat for the whole building or floor, can significantly save energy

bills and with the added convenience of being controlled through one central website

would allow the busiest of users to only heat the rooms needed, at the times when

they are needed. If this website is also made available to the internet through a

permanently connected home broadband connection, the home owner would then

have increased control over the temperature in their rooms, by being able to control

 Page 2 of 61

their temperature from anywhere in the world. An example of this is the scenario of

when the user extends or shortens a planned holiday and can simply connect to their

house to update its heating pattern to adapt to their latest needs.

 Page 3 of 61

���� � 	� ��
� 	� ��
� 	� ��
� 	� ��
� ���� ���� ���� ���!!!!
" � ���#��
" � ���#��
" � ���#��
" � ���#��
���
���$�����
" #�	#���
���
���$�����
" #�	#���
���
���$�����
" #�	#���
���
���$�����
" #�	#���

�%��%��%��%� � ���� ���� ���� ���

To develop an embedded web based programmable room-by-room heating control

system, using an ethernet local area network

�%��%��%��%� " � ���#��" � ���#��" � ���#��" � ���#��

• Research temperature measurement and control

• Research mains heater control

• Research previous final year students’ ethernet based projects and take heed of

the problems they encountered

• Research and utilise in-circuit debugging (ICD) and in-circuit serial

programming (ICSP)

• To research & utilise the C18 microchip compiler

• Research transmission control / internet protocol (TCP/IP)

• Utilise Microchip’s TCP/IP stack

• Research and utilise the dynamic host control protocol (DHCP) for automatic

internet protocol (IP) address allocation

• Research the hyper-text transfer protocol (HTTP) and implement embedded

web server to host an HTML front end

• To design the system in a modular form

• To design, build and test the hardware and software to form a solution to the

project aim

�%&�%&�%&�%& ���$�����
" #�	#������$�����
" #�	#������$�����
" #�	#������$�����
" #�	#���

This is an embedded system, to perform the heating part of a ‘smart home.’ All the

functions will be controlled and monitored by a central node that monitors room

nodes and sets the required temperature set-point. It communicates with the room

nodes as a TCP client on the ethernet network. The central node also provides an

embedded web server which the user can log-in to from within the house’s LAN or

 Page 4 of 61

potentially the WWW to control the system. The web page(s) will allow monitoring

of each room temperature and the setting of the target temperature. For this prototype

model, there will be two rooms with the potential to have more rooms added to

facilitate a larger house. Each room node will measure the temperature level and drive

the ‘heater’ in such a way as to achieve the required set-point. The room node will act

as a TCP server that will return values to the central node and receive the required set-

point. For the exhibition of the project, each room will be a suitably sized cardboard

box with a 40W light bulb as the heater.

 Page 5 of 61

&&&& ' ����	����
���
(����	�' ����	����
���
(����	�' ����	����
���
(����	�' ����	����
���
(����	�$$$$

&%�&%�&%�&%�)�������
* ��
+ �	#�	�)�������
* ��
+ �	#�	�)�������
* ��
+ �	#�	�)�������
* ��
+ �	#�	�

An embedded server is a device that is small in size and cost, capable of

communicating with a data network. Primarily, embedded systems are used in process

control, whereby the user may request an environment to have certain properties and

the system would need to manage peripherals connected to it to best fit the user’s

requirements. With the wide-spread use of the internet across the world, if the control

system has an embedded web server built in, the user has the power to adjust variables

potentially from anywhere in the world.

However, the main disadvantages of using an embedded system to host a web server,

rather than a PC are the limited processing power and memory size. Nevertheless,

with the rapid increase of silicon density and ongoing microprocessor /

microcontroller technology, it is foreseeable that these problems can be overcome

although there would be significant impact on the price of the overall product, when

using a high specification system.

&%�&%�&%�&%� (�#���
��
,	�#����
�����(�#���
��
,	�#����
�����(�#���
��
,	�#����
�����(�#���
��
,	�#����
����������������� ----�$�	��
,	� ����$�	��
,	� ����$�	��
,	� ����$�	��
,	� ���

The project that is most similar to this one was carried out two years ago by Kristyan

Osborne, with the title ‘Embedded web server for remote control of sensors over the

internet.’ The main differences between that project and this are as follows:

Item \ Project Student Kristyan Osborne Michael Curry

Network controller Realtek RTL8019AS Microchip ENC28J60

Number of nodes 1 At least 2

Microchip TCP/IP stack

version

v2.20.04.01 v4.00RC (beta)

Microchip PIC p18f452 p18f4685

Table 1 - Comparison of Projects

One of the major potential set backs that Kristyan faced, was the need to make an

adaptor board for the Realtek network interface controller (NIC), since it is only

available in surface-mount form. This problem was avoided for this project, by using

a microchip ENC28J60 SPI ethernet controller (which was still in development at the

 Page 6 of 61

time of Kristyan’s project) in a slim plastic dual in-line package (SPDIP), making it

easy to use for a prototype on a solder-less breadboard. Since the latest versions of the

microchip TCP/IP stack support this chip, the substitution should be seamless.

However, the demo board (PICDEM.net) that was previously used is now out of date,

with the PICDEM.net 2 board being its successor. This new board contains both the

ENC28J60 as well as a PIC18F97J60 – one of the new surface mount PICs with an

integrated ethernet controller. Unfortunately, it is not within the project budget to

purchase one of these boards, and all code will need to be run on a purpose built

prototype node.

There have also been several advancements to the microchip TCP/IP stack since

Kristyan attempted the project, including fixes for bugs (such as the DHCP lease time

issue that was encountered previously) and new modules such as NetBIOS, SMTP,

Telnet and templates for generic TCP clients and servers. However, since the version

being used is a pre-release (released by microchip support, for use in this project

whilst trying to get v3.75 to work), there were also new software bugs and unfinished

new modules encountered.

&%&&%&&%&&%& ��������----� �	���
���������
���
� 	��	������� �	���
���������
���
� 	��	������� �	���
���������
���
� 	��	������� �	���
���������
���
� 	��	������

Certain microchip peripheral interface controllers (PICs) have an in-circuit serial

programming (ICSP) capability, which allows programmers to change the programme

memory of the device, without physically removing the microcontroller unit (MCU)

from the target board. This can be achieved using only 5 wires – Vdd, Vss, Vpp, PGD

and PGC. Vdd allows the circuit programmer module to either detect whether there is

power on the target board or, if a 5 volt circuit with low current consumption, power

the target board. The Vdd line may be omitted, but will cause errors to be triggered in

the integrated development environment (IDE), since the ICSP module will report the

target board is not powered. Vss provides a ground reference / return. Vpp is used to

hard-reset the target board and is required in the PIC programming routine. PGD and

PGC are used to clock data to and from the PIC allowing the programme and

EEPROM data and to be written, read and verified.

In-circuit debugging (ICD) uses the same 5 lines as ICSP, but allows the programme

developer to step through programmes running on the target device and directly read

and write to registers on the MCU, thus making debugging code very easy. However,

 Page 7 of 61

when the PIC is running in debug mode, the operation speed is reduced significantly.

In the case of this project, making running the TCP/IP stack in debug mode

impossible. Nevertheless, portions of code may be loaded into a separate project for

debugging purposes, should the reason for a routine not working become unclear.

&%.&%.&%.&%. / ��	��$�,
0/ � � �12
�
���,���	/ ��	��$�,
0/ � � �12
�
���,���	/ ��	��$�,
0/ � � �12
�
���,���	/ ��	��$�,
0/ � � �12
�
���,���	

Since the microchip TCP/IP stack is written in C, a C compiler must be used to

convert the programme to machine code. Fortunately, there is a free student edition of

the microchip C compiler for the 18 series of PIC (a.k.a. MCC18). The only

differences to a C compiler for the PC are the ‘additional’ library functions.

• Not all the functions usually available are present

• Some of the functions that are present have more limited functionality than

their counterparts on PC C compilers

• Data-types must be handled correctly, especially when data-passing between

functions, e.g. when comparing a string, two variables must be passed –

strcmp(str1,str2); and not strcmp(str1,“teststring”);

&%3&%3&%3&%3 �+ "�+ "�+ "�+ " ----" + �
4
����	
	���	����
�����
5
�� � 6��
����
�����" + �
4
����	
	���	����
�����
5
�� � 6��
����
�����" + �
4
����	
	���	����
�����
5
�� � 6��
����
�����" + �
4
����	
	���	����
�����
5
�� � 6��
����
�����

The industry standards organisation open systems interconnect (a.k.a. ISO-OSI) seven

layer reference model. The seven layers are split up as follows:

• Layer 7: Application layer – this is the layer to which the ‘user’ interfaces to.

• Layer 6: Presentation layer – this layer transforms data received from lower

layers into a form usable by the application layer

• Layer 5: Session layer – this layer controls the establishment and termination

of connections (or sessions) between clients.

• Layer 4: Transport layer – this allows reliable transmission of messages to

occur, relieving upper layer protocols of the task.

• Layer 3: Network layer – this allows variable lengths of message and

segmentation / desegmentation of oversized packets to be transferred from

source to destination over one or more networks. Routing of packets between

networks uses this layer’s addressing.

 Page 8 of 61

• Layer 2: Data link layer – this defines the encoding / decoding of the data to

be passed to and from the physical layer. It also involves some form of node

addressing facilitating the transfer of data from one node to another. In the

case of 10Base-T ethernet, the data is encoded in Manchester code and MAC

addresses are used to identify each node.

• Layer 1: Physical layer – this defines the physical and electrical specifications

of the network medium for which data signals are transmitted and received

through.

Based roughly on [WP1] and [STA07] descriptions

The TCP/IP 5 layer model is based on the ISO-OSI model, with layers 4 & 5 and

layers 6 & 7 combined. However, there are also slight overlaps between the layers

Side by side, the two models roughly compare thusly:

ISO-OSI RM TCP/IP

7 Application layer

6 Presentation layer
Application layer

5 Session layer

4 Transport layer
Transport layer

3 Network layer Internetworking layer

2 Data link layer Data link layer

1 Physical layer Physical layer

A.k.a. Network
Access layer

Table 2 - Comparison of ISO-OSI and TCP/IP layers

&%7&%7&%7&%7 �	����������
� ��	��
� 	�����
6
���	��
� 	������	����������
� ��	��
� 	�����
6
���	��
� 	������	����������
� ��	��
� 	�����
6
���	��
� 	������	����������
� ��	��
� 	�����
6
���	��
� 	�����
����
����
����
����

The portions on TCP and IP in this section have been adapted from another

dissertation written by the author, for the module EO306 Data Communications.

&%7%� ���	��
� 	�����
8 �	����
.
9�� #.!
" + �
����	
&:
;
(��
4<�

This is a data-oriented protocol, which is the dominant network layer protocol used on

the internet and may be used on any packed switched network. Since it is data

oriented (opposed to connection-oriented), none of the data sent is guaranteed to

 Page 9 of 61

arrive at all, in the correct order or error free. This is where an upper layer protocol

such as TCP or UDP must be used.

Each node on an IP network has a unique 32 bit address assigned to it. This is usually

divided up into four bytes and it is common practise to be displayed as a dotted

decimal quad. Other representations include dotted-hexadecimal, dotted-octal, raw

hexadecimal, raw decimal and raw octal.

Out of the possible 4,294,967,296 (232) addresses potentially available, there are

certain ranges (or blocks) that are reserved for specific use. Examples of this are for

private networks, local loop-back and broadcast.

Based roughly on [WP2] and [STA07] descriptions

&%7%� �	����������
� ��	��
� 	�����
�#�	
�� #.
9�� � !
" + �
����	�

.5 3:
;
(��
4<&

This is a connection-oriented protocol, which allows network nodes to establish a

reliable connection with one another using a method known as socketing. Socketing

allows multiple servers to run on a single node, by assigning the different services

unique ports.

Before data from an higher level protocol can be sent, TCP must first establish a

connection with the other end, using a method known as the ‘three way handshake.’

First, the client will send a packet with the SYN flag set. If the server receives this

packet, it will reply with a packet with the SYN and ACK flags set. If the client

receives this packet successfully, it will respond by sending a packet with just the

ACK flag set. The connection is now established and the higher level protocol may

now send data.

Since the protocol is connection oriented, all the packets sent must be acknowledged.

If an acknowledgement of a packet is not received, the sender will timeout and resend

the packet.

Once all the data has been sent from the higher level protocol, the link must be closed.

One method is by using a three way handshake. In this case, the flags set in order are

FIN, FIN+ACK, ACK.

Another method is a four way handshake, where one end sends a packet with the FIN

flag set, the other end replies with ACK. At this point, only one way communication

 Page 10 of 61

may take place. Once the other end is ready to terminate the link, it will send a packet

with the FIN flag set, to which the other end will reply ACK.

Based roughly on [WP3] and [STA07] descriptions

The key advantages of TCP over IP alone are:

• Multiple servers running behind one node (socketing)

• Data from higher level protocols gets checked for errors

• All packets are acknowledged

o Lost packets get retransmitted

• Segmented data easily put back in the correct order

&%7%& = ��	
����	��
� 	�����
9= �� !
" + �
����	
.:
;
(��
471

This protocol is designed to provide minimum-latency data transfer. It uses the same

socketing method as TCP to allow multiple connections to the same node. However,

to reduce latency, the packets sent are not acknowledged therefore making any data

being transmitted over an unreliable medium prone to packet loss and packet

disordering, although the data that is received will be accurate since the checksum in

the UDP header is for the data as well as the header.

The key advantages of using UDP over IP alone are:

• Multiple servers running behind one node (socketing)

• Data from higher level protocols gets checked for errors

The key advantages of using UDP in place of TCP are:

• Reduced latency (no three way handshake to initiate connection and no

acknowledgements of individual packets)

The key disadvantages of using UDP in place of TCP are:

• Since there is no built in packet ordering strategy, if the order of the data is

significant, an higher level protocol must deal with this

• Since there is no packet acknowledgement, if packet loss is not acceptable, an

higher level protocol must deal with this

 Page 11 of 61

&%4&%4&%4&%4 / ��	��$�,
�� � 6��
����/ ��	��$�,
�� � 6��
����/ ��	��$�,
�� � 6��
����/ ��	��$�,
�� � 6��
����

The Microchip TCP/IP stack is a modular, highly customisable piece of code that

allows a TCP/IP stack to run on a PIC, with just the services required.

High level modules available in v4.00RC of the stack include:

• Announce (Announce.c)

• Address Resolution Protocol (ARP.c)

• Dynamic Host Control Protocol (DHCP.c)

• Domain Name System (DNS.c)

• File Transfer Protocol (FTP.c)

• Generic TCP Client (GenericTCPClient.c)

• Generic TCP Server (GenericTCPServer.c)

• Hypertext Transfer Protocol (HTTP.c)

• Internet Control Messaging Protocol (ICMP.c)

• NetBIOS Name System (NBNS.c)

• Simple Mail Transfer Protocol (SMTP.c)

• Simple Network Management Protocol (SNMP.c)

• Telnet (Telnet.c)

• Trivial File Transfer Protocol (TFTP.c)

These modules in turn use the following modules to access the network:

• Transport Control Protocol (TCP.c)

• Internet Protocol (IP.c)

• User Data Protocol (UDP.c)

• Serial Line Internet Protocol (SLIP.c)

There are also other modules, used for the control of external peripherals, including

the ethernet controller and helper functions to allow the stack to operate efficiently:

• General Delay Routines (Delay.c)

• Medium Access Control Layer for Microchip ENC28J60 (ENC28J60.c)

• Medium Access Control Layer for Microchip PIC18F97J60 (ETH97J60.c)

• Helper Functions for the TCP/IP stack (Helpers.c)

 Page 12 of 61

• Data I2C EEPROM Access Routines (I2CEEPROM.c)

• LCD Access Routines (LCDBlocking.c)

• Microchip File System Access API (MPFS.c)

• Medium Access Control Layer for Realtek RTL8019AS (RTL8019AS.c)

• Data SPI EEPROM Access Routines (SPIEEPROM.c)

• TCP/IP Stack Manager (StackTsk.c)

• Tick Manager, for loose timekeeping (Tick.c)

• UART access routines (UART.c)

The modules from the stack that will be used for this project (with the exception of

the helper functions) have a software structure as follows:

Figure 1 - Stack structure chart

However, the actual flow of the software is sequential, using the following sequence:

Main

�

 InitializeBoard

�

 TickInit

�

InitAppConfig

�

StackInit

�

HTTPInit

�

 Page 13 of 61

Initialise DHCP

�

Main Loop

Main Loop

�

Blink system LED once per second routine

�

StackTask

�

HTTPServer

�

DiscoveryTask

�

NBNSTask

�

TelnetTask

�

ProcessIO

�

DHCP lease handling routine

�

(Back to start of main loop)

Figure 2 - Stack flowchart

With the stack written in this modular fashion, the task of creating additional

functions to do tasks specific to this project is made easy. By basing code on the

GenericTCPServer module, a fully customised TCP socket can be created, using a

suitable free port. To include this within the running of the stack, the function call

may be placed after the ProcessIO task.

 Page 14 of 61

.... ������
��
�	����������
��
�	����������
��
�	����������
��
�	����

.%�.%�.%�.%� � ����� ��
	���� ����� ��
	���� ����� ��
	���� ����� ��
	���----����
��� �	�
��� �������
��� �	�
��� �������
��� �	�
��� �������
��� �	�
��� �������

.%�%� >%�?

Advantages Disadvantages

• Can be modulated onto mains

wiring

• Hence potentially cheaper set-up

costs

• Other home-automation products

use this medium allowing

potential integration to an existing

home automation network

• If adopted on a large scale,

neighbours on the same electricity

phase would also be part of the

network (privacy issues for the

mains wiring option)

• Cabling costs if mains not used

• Slow connections

• Protocol translation / extra coding

involved to use in conjunction

with TCP/IP stack

Table 3 - X.10 advantages / disadvantages

.%�%� � � @
9� ��	����	
� 	��
@ �� �	�:

Advantages Disadvantages

• Network protocol specifically

designed for real-time automation

tasks (e.g. cars)

• Protocol translation / extra coding

involved to use in conjunction

with TCP/IP stack

• Additional costs of wiring for all

users

Table 4 - CAN advantages / disadvantages

.%�%& �)))
1?�%&
) $�	��
9� �	��:

Advantages Disadvantages

• Very popular network medium

• All modern computers in

• Additional costs of wiring for the

majority of users, unless an

 Page 15 of 61

production have out-of-the-box

access to this network medium

• Many ‘smart-homes’ are pre-

wired with ethernet cabling

additional ethernet over mains

module was bought.

Table 5 - Ethernet advantages / disadvantages

.%�%. �)))
1?�%��
) $�	��
9* ���:

Advantages Disadvantages

• No costs involved in cabling

• Hardware readily available

• Poor signal coverage over a large

area

• Unreliable connections in poor

signal areas

• At least one wired to wireless

bridge must be used to allow

nodes to communicate

• More complex setting up required

of the end user / installation

technician

• A lot more time required to

interface to project (making this

outside of this project’s scope)

Table 6 - WiFi advantages / disadvantages

.%�%3 � ���������

Since the microchip TCP/IP stack is written for ethernet and the popularity of ethernet

as a network medium, wired ethernet was chosen to be used. It is also the case that

many newly built smart homes are being pre-networked with wired ethernet thus

making installation of a product of this sort very simple.

 Page 16 of 61

.%�.%�.%�.%� � $������
�$�	��
����������� $������
�$�	��
����������� $������
�$�	��
����������� $������
�$�	��
����������

.%�%� + ,����������
�������
� �$��
) @ � �1A7?
���
�$��

Within the datasheet for the ENC28J60 is the following circuit diagram regarding

external connections for the chip:

Figure 3 - ENC28J60 Ethernet Termination and External Connections [MC1]

After some quick initial research, it became apparent that there was an array of RJ-45

sockets with integrated magnetics (i.e. transformers / inductors) and this arrangement

was known as ‘tab-down’. However, it also became clear after looking in the RS and

Farnell catalogues that these components had several variations, namely with different

turns ratios on the transmit (TX) and receive (RX) transformers. It also became

apparent that these parts may be difficult to source since despite having the lines in

the catalogues, when checking availability online they showed up as being out of

stock. Nevertheless, a line that was in stock and of the correct specification was

eventually found and the parts were ordered and promptly delivered.

The only other miscellaneous part from this circuit was the ferrite bead. After a quick

search within the microchip user-support forums, it became clear that the inductance

value of the ferrite bead was not at all critical since it was just used to prevent electro-

magnetic interference (EMI).

 Page 17 of 61

.%&.%&.%&.%& + �������
��
+ �������
��
+ �������
��
+ �������
��
�
�
�
�
����� ��
���	����	����	����� ��
���	����	����	����� ��
���	����	����	����� ��
���	����	����	

Since microchip offer a free sampling service for developers, the only constricting

points to consider are the following:

• Must be an 18 series PIC since the TCP/IP stack is written in C, and the

microchip C compiler is written for the 18 series PICs

• Must have sufficient programme memory to store the TCP/IP stack, web pages

(for the central server) and additional modules needed for the task in hand

• Internal EEPROM would be an advantage for storing variables that are

required to be retained in the event of power loss

• Must be able to run a 3.3v, since having multiple voltages in the circuit would

require a more complex power supply, hence increasing costs

.%..%..%..%. �$�	���
��������$�	���
��������$�	���
��������$�	���
�������

Since components used to accurately sense temperature, such as thermocouples, rarely

have a linear relationship between the measured result and the actual temperature, a

decision was made to use a pre-made, ready linearised thermally sensing integrated

circuit (IC) with a serial digital output. Since the ENC28J60 ethernet controller uses

an SPI bus, it made sense to choose a thermal sensor that uses the same technology.

The microchip TC77 is an example of this, with free samples available from the

microchip website for prototyping purposes. However, it is only available in a surface

mount form factor, causing a dual-in-line adaptor board to be sought to allow usage of

this chip on the solder-less prototype board being used. Nevertheless, since the final

design for a room node is intended to be on PCB, a chip of this form would not a

problem.

 Page 18 of 61

.%3.%3.%3.%3 / ����
�� ��$���/ ����
�� ��$���/ ����
�� ��$���/ ����
�� ��$���

Since the circuit will be running on 3.3v, a relay with a suitable coil voltage rating and

a contact rating of 220-240 volts must be chosen. It is also important to remember that

the final product would be intended to power mains heaters, which have high current

consumptions (up to 13 amps) hence a relay for the final product should have a power

rating of at least 3.1kW.

During testing of a 5 volt relay that had been acquired, it became apparent that

although it would be suitable to be powered using a 3v supply, the PIC would not be

able to supply enough current to the coil (see section 11.1 (Appendix A) for

experiment results), so a switching transistor circuit had to be designed to buffer the

output and allow the relay to be driven correctly without causing damage to the PIC.

Hence the following “emitter follower” buffer circuit was designed:

Figure 4 - Collector follower transistor buffer

The PIC could now be used for the switching the relay.

.%7.%7.%7.%7 / ������������/ ������������/ ������������/ ������������

There are certain other parts of the microchip which must also be dealt with, that have

not been mentioned yet in this section. The most important area is the power supply.

Both the PIC18LF4685 and the ENC28J60 have multiple pins that are used to supply

power and they must all be connected (i.e. assuming connecting only one Vdd line

and one Vss line to the chip will not work).

BC10

8

1.0k

Relay

PIC

Mains

GND

VCC
3.3

V

 Page 19 of 61

.%4.%4.%4.%4 ��������----��	���
��	���
,	��	������
6
������ �����	���
��	���
,	��	������
6
������ �����	���
��	���
,	��	������
6
������ �����	���
��	���
,	��	������
6
������ ���

Using the microchip ICD2 in-circuit serial programmer / in-circuit debugger, allows a

lot of time and effort to be saved. To connect the debugger the following 5 lines from

the RJ-12 connector must be connected:

Figure 5 - ICD2 RJ-12 Pinout Figure 6 - ICD2 PIC connections

[MC3]

Since RB6 and RB7 are not being used with the design for this project, the connection

of the ICD2 is simple, although in a more complex circuit where these pins are

required, the peripherals connected to these two pins would need to be isolated whilst

programming is in progress.

.%1.%1.%1.%1 � �	���
' ����
����	��� �	���
' ����
����	��� �	���
' ����
����	��� �	���
' ����
����	��

Using the information already discussed, a block diagram for the circuit may now be

produced:

Ethernet SPI
controller18F series PIC

SPI

SPI
temperature

sensor

RJ45 Tab
Down Socket

RJ12
Socket

ICD

ICD2 connection with PC

Ethernet Hub

3.3V PSU

240V (contact)
3V (coil)

Relay

Heater

Figure 7 - Circuit Block Diagram

For a full circuit diagram, please see section 11.2 (Appendix B).

 Page 20 of 61

.%<.%<.%<.%< ������
5
��� ��������
��
�� � 6��
����
�������������
5
��� ��������
��
�� � 6��
����
�������������
5
��� ��������
��
�� � 6��
����
�������������
5
��� ��������
��
�� � 6��
����
�������

Firstly, it is important to remember that the modules are in effect acting as part of a

multi-tasking system and the minimum amount of time needs to be spent in each

module. This is why all the modules have been written by using a state machine. This

allows each module to remember where in a process it was, whilst allowing other

modules to carry out their tasks when they would otherwise be waiting.

.%<%� / �� ��������
��
���	��$�,2�
�B�����
�������

.%<%�%� �����

This module is new for version 4 of the microchip TCP/IP stack and since the stack

was still pre-release when I received it, this module was not complete. With a couple

of week’s work, the user and password was authenticated and a basic command line

was written. This provided a very useful platform to write commands for testing the

custom modules that were created.

Commands implemented:

• help – display the available commands

• values – run the original task, where the status of AN0, switches and LEDs are

reported

• passwd – update the telnet password (and store to internal EEPROM)

• newnbn – update the NetBIOS Name of node

o This also involved converting to upper case, limiting to 15 characters

and padding with 0x20 (space) if the supplied name is less than 15

characters. See section 4.9.3.3 for details of this function.

• sendtemp – accept a user inputted IP address and new target temperature

value, and then trigger the transmission of the value

o This involved converting the user entered IP address string of

characters into a 32 bit hexadecimal IP address – see section 4.9.3 for

details of this function.

• discover – initialise the discovery process, or report that it is already in

progress

• quit – terminate the connection

 Page 21 of 61

.%<%�%� C ���

There were only a few modifications made to the HTTP module itself:

• HTTP headers updated to include the ‘server’ field

• .htm files allowed to have CGI content as well as .cgi files

o This was required to allow the index page to have dynamic content

• Error 404 (not found) page updated to return a properly formatted HTML page

rather than literally ‘Not found’.

.%<%�%& C ���
� � �

The Common Gateway Interface (CGI) used by the maindemo module, was pretty

straight forward to understand, by looking at the existing examples.

CGI variables within the HTML are formatted %00 to %ff and when the HTTP

module calls HTTPGetVar, the variable ‘var’ (of data-type ‘BYTE’) will contain the

variable number (e.g. if %2e was found within a page, ‘var’ would contain 0x2e). One

of the limitations of the function HTTPGetVar, is that only one byte can be returned

at a time, although this function will be repeatedly called until HTTP_END_OF_VAR

is returned, allowing a string of characters to be inserted into the dynamic HTML file.

The dynamic variables that were implemented were as follows:

• %20 – VAR_CURRENT_TEMP – Temperature reported from the local TC77

thermal sensor

• %21 – VAR_NODE_NAME – The local node’s NetBIOS Name

• %22 – VAR_HEATER_STATUS – Reports whether the local heater is ‘on’ or

‘off’

• %23 – VAR_TARGET_TEMP – Reports the local node’s target temperature

for the room

• %24 – VAR_REMOTE_TEMP – Returns the temperature reported from the

last SendTemp operation

• %25 – VAR_DISCOVERED_NODES – Returns the string generated by the

Discover module, reporting the NetBIOS Name and IP addresses of the nodes

discovered on the local ethernet subnet

 Page 22 of 61

• %26 – VAR_DISCOVER_STATUS – Reports whether the discovery process

(is) ‘’ or (is) ‘ not’ in progress

.%<%�%. C ���
��������

HTTP commands are the variables that are sent on the end of the URI and can be

easily generated by forms on HTML web pages. For example, to send a command, the

URL to be open would be HTTP://domainname/cmdname?varname=var.

Once the variables have been received, it is a relatively easy task of reading the

command name, variable name and variable from within the HTTPExecCmd

function, using the ‘argv’ array passed. This array is formatted with argv[0] being the

command name, argv[1] being the first variable name, argv[2] being the first variable,

argv[3] being the second variable name, argv[4] being the second variable and so on.

The additional commands that were implemented were as follows:

• X*?Y*=TargetTemp

o Accepts a new set point for the local node

� Copies TargetTemp to the TempControl process variable

o Returns index.htm

o Since only the first character of the Command name and Variable

name are tested, a more meaningful name may be inserted in place of

the *

• Discovery?novariables

o Initiates the discovery process

o Despite not taking any variables, one must be supplied to trigger the

HTTPExecCmd function to be called

o Returns discover.htm

• SendTemp?I*=RemoteIP&T*=NewTargetTemp

o Initiates the SendTemp process

o Converts the RemoteIP to a 32 bit hexadecimal IP address (identical

routine used in the telnet module) and copies the NewTargetTemp

string to the SendTemp process variables

� Special care had to be taken to trap if T came before I also

o Returns index.htm

 Page 23 of 61

o Since only the first character of the variable name is tested, a more

meaningful name may be inserted in place of the *

� e.g. IP and Temperature

.%<%� @ ��
����
�������
� 	���
�,����������
��	
$�
,	� ��

.%<%�%� � ����,
;
(���
��,�	��	�
�	��
�� 44
+ � �
$�	���
�����	

Two bytes of data were read from the SPI bus, triggered by the chip select line going

low and two ‘dummy’ bytes being sent. The three least significant bits of the data then

had to be shifted ‘out’, as they were always set to ‘1’. The remaining data was then a

13 bit signed integer, with each step being worth 0.625°C. However a simple

multiplication by 0.625, with the result being stored as a floating point was not all the

conversion required before the result could be used, since a floating point number to

string conversion function is not available within the MCC18 library functions.

Therefore, a function was written to allow a floating point number of -99.9 to +99.9 to

be converted to a string (please see section 4.9.3 for details of this function). This

string was then stored as ‘strTemp’.

Please see section 11.3 (Appendix C) for the complete c code listing of this module.

.%<%�%� + ������,
;
" ,��
���������
�
	����
����
�
�,���
�	��

��,�	��	�
���
	���
	����
��,�	��	�

This module was roughly based on the GenericTCPClient module written by

microchip. However, since the GenericTCPClient module is triggered by a button

being pressed, a new global flag was created. When this flag was false, the state of the

module would be forced to ‘home’ and would then remain there until the flag was set

to ‘true’. Once this had been triggered, the module would then use the ARP module’s

ARPResolve to resolve the MAC of the specified remote IP. Once this had been

received, the module would continue to use the TCP module’s ‘TCPConnect’ function

(N.B. stack client mode must be enabled to use these functions) to establish a

connection with the remote node. Once the socket had been established, the new set

point would be sent, followed by ‘\r\n’ (carriage return, line feed) and the response

 Page 24 of 61

from the remote node (i.e. the current temperature there) collected and stored. The

socket could then be disconnected, using the TCP module’s TCPDisconnect function.

Please see section 11.4 (Appendix D) for the complete c code listing of this module.

.%<%�%& ���,� ��	��
;
� ��	���
$�
���
��
$�
$���	
��,�

This module took the current temperature string (strTemp) produced by the GetTemp

module and the target temperature string taken either from the HTTP command or the

custom TCP socket module and using the microchip library function ‘atof’ converted

the strings into floating point numbers. The following procedure could then be used:

PROCEDURE TemperatureControl

 IF {(Current Temperature) > (Target Temperature + Hysteresis)}

 Ensure the heater is switched off

 ELSE IF {(Current Temperature) < (Target Temperature – Hysteresis)}

 Ensure the heater is switched on

 END IF

END PROCEDURE

For the purpose of demonstrating the code worked, an hysteresis value of 0.5 °C was

used. However, this value would need to be a little higher to be used in a real room,

since temperature can fluctuate due to air movement cause by, for example human

presence and doors / windows being opened.

Please see section 11.5 (Appendix E) for the complete c code listing of this module.

.%<%�%. + ����
;
� ����
$�
���	��
����
�
�,���
$�
�����
����2�

�	��
��,�	��	�
���
	���
$�
��		��
��,�	��	�

The original plan for this stack module was to base it on the GenericTCPServer, but

since it was designed to process one character at a time (taking a letter and relaying its

uppercase version back), it made more sense to use the telnet module as a basis, since

there was a string acquisition technique already built in. After the extensive work on

the telnet module, a very high level of familiarity had been built up, making the job of

adapting the username entry into a target temperature acquisition, creating an

additional state to report the node’s current temperature and removing the additional

states an easy task. The only piece of additional intelligence that was required, was to

 Page 25 of 61

not update the temperature set point, if either an ‘empty’ target temperature had been

sent (i.e. no characters had been sent, only ‘\r\n’ / carriage return, line feed).

Please see section 11.6 (Appendix F) for the complete c code listing of this module.

.%<%�%3 �����#�	
;

� ����
$�
� ����#�	�
��
�$�	
���	��$�,
�����
��
$�

��
�����!
, 	������ ��
�����
��
	���
�����

Due to the nature of this module, the only piece of code that could be used as a guide

is the code in announce.c (i.e. the code that sends out a response to discovery

requests). Since there was no code to use as a direct comparison, a lot more effort was

required to think around the problem to get working code. However, by using the

same state machine methodology as the other stack modules and some carefully

chosen variables, it was possible to implement the following function:

PROCEDURE Remote Node Discovery

 Open UDP socket (IP & MAC all 1s, src port 31337, dest port 30303)

 Send out discovery packet

 Initialise timer

 DO

 IF (a response packet has been received) THEN

 Save remote node’s NetBIOS name and IP address in the

 next available slot in the discovered nodes array

 WHILE (timer < 10 seconds)

 Fill ‘undiscovered’ spaces in the discovered nodes array with blanks

 Close UDP socket

END PROCEDURE

Since there are only limited resources on the PIC, it was apparent that the array of

discovered nodes was quite large (using 16 bytes for the NetBIOS Name and the

microchip struct IP_ADDR for the IP address), so a limit of 5 discovery slots was

created. However, using a PIC with more resources than the 18F4685, or EEPROM

would allow this limit to be extended. However, to use internal or external EEPROM

would further complicate the procedure, also causing a reduction of the stack’s

operation speed.

Please see section 11.7 (Appendix G) for the complete c code listing of this module.

 Page 26 of 61

.%<%& � �� ������
��������
� 	���
��	
$�
���

.%<%&%� � ��#�	���
�
����
�
�
�	���
9� �$��
$�
	����
-<<%<
�
D<<%<:

// Floating is the floating point number to be converted

Whole = Floating; // Whole is now a rounded down integer value of the #

if(whole >= 0)

 string[0] = '+';

else

{

 string[0] = '-';

 whole = whole * -1;

}

string[1] = Floating / 10 + 48; // Tens

string[2] = whole % 10 + 48; // Units

string[3] = '.';

Floating -= whole;

string[4] = Floating * 10 + 48; // Tenths

string[5] = '\0';

Points worth noting about this code, are that:

• Adding 48 at the end of each conversion line turns the integer (assuming it is

less than 10) into an ASCII character

• During the conversion, the value in Floating is destroyed, so if that floating

point number is required further down, a copy must be made

• All positive numbers have a leading +

• For numbers between -9.9 and +9.9 there will be a leading zero

 Page 27 of 61

.%<%&%� � ��#�	���
�
���	
���	��
��
���	���
�������
����
E���

�	���
�
�
&�-� �
$�B��������
	�,	��������

// N.B. microchip stack stores the hex IP address in the following format:

// e.g. decimal dotted quad 2.4.3.7 => 0x07030402

Server.IPAddr.Val = 0x00000000; // Initialise the hex IP address variable

StartPtr=0; // Initialise pointers

CurrentPtr=-1;

do

{

 CurrentPtr++;

 // Find the next dot in the string, or end of string (0x00)

 if((StringIP[CurrentPtr] == '.') || (StringIP[CurrentPtr] == '\0'))

 {

 Counter1=0;

 // Extract the number from the last dot and the current dot

 for(Counter=StartPtr;Counter<CurrentPtr;Counter++)

 TempStr[Counter1++] = StringIP[Counter];

 TempStr[Counter1] = '\0';

 // Convert the extracted number and shift to the top byte of a

 // temporary 32 bit number

 Temp = atoi(TempStr) * 0x1000000;

 // Shift the data already in the hex IP address down a byte

 // and insert the current byte

 Server.IPAddr.Val = Server.IPAddr.Val / 0x100 | Temp;

 StartPtr = CurrentPtr + 1;

 }

} while(StringIP[CurrentPtr] != '\0');

Points worth noting about this code are that:

• It is assumed that it is a decimal dotted quad that has been fed to the function –

if there are more than 4 numbers separated by a ‘.’, then the last 4 should be

stored in the 32 bit representation

• If a non-numeric (decimal) value is entered, the microchip atoi function will

return a zero

• If a number greater than 255 is entered, the value will ‘overflow’ and only the

8 least significant bits will be stored in the 32 bit IP address

o In mathematical terms, keep subtracting 256 until the result is in the

range 0 - 255

 Page 28 of 61

.%<%&%& � ��� ���
��
�
�7
���
�	���
� �$
?B�?
9�,���:
��
����
$��
�3

�$�	���	�
��	��

(i.e. for the correct storage of a NetBIOS name)

while(DataPtr < (NewNBN + sizeof(NewNBN)-1))

 *DataPtr++ = 0x20;

*DataPtr = 0; // Terminate the string

Points worth noting about this code:

• It is assumed the DataPtr is pointing at the position after the last entered

character of the new NetBIOS name (NewNBN)

o Thus allowing it to sit perfectly after the acquisition of a new NetBIOS

name in the telnet module

 Page 29 of 61

.%<%&%. (��� ���
���
* 	����
���	���
)) � (" /
9���� ��
�$�	:

This was achieved using the code provided from microchip. Despite looking identical

in functionality to the code I had written using the PIC datasheet, this code works!

//==================================

// EEPROM read routine

unsigned char ReadEEPROM(unsigned int Address)

{

 // Load the high byte of the EEPROM address

 EEADRH = (unsigned char)(Address>>8);

 EEADR = (unsigned char)Address; // Load the low byte of the EEPROM address

 EECON1bits.RD = 1; // Do the read

 return EEDATA; // Return with the data

}

//==================================

// EEPROM write routine

void WriteEEPROM(unsigned int Address, unsigned char Data)

{

 // Variable to save Global Interrupt Enable bit

 static unsigned char GIE_Status;

 // Load the high byte of the EEPROM address

 EEADRH = (unsigned char)(Address>>8);

 EEADR = (unsigned char)Address; // Load the low byte of the EEPROM address

 EEDATA = Data; // Load the EEPROM data

 EECON1bits.WREN = 1; // Enable EEPROM writes

 GIE_Status = INTCONbits.GIE; // Save the Global Interrupt Enable bit

 INTCONbits.GIE = 0; // Disable global interrupts

 EECON2 = 0x55; // Required sequence to start the write cycle

 EECON2 = 0xAA; // Required sequence to start the write cycle

 EECON1bits.WR = 1; // Required sequence to start the write cycle

 INTCONbits.GIE = GIE_Status; // Restore the Global Interrupt Enable bit

 EECON1bits.WREN = 0; // Disable EEPROM writes

 while (EECON1bits.WR); // Wait for the write cycle to complete

}

[mc2]

 Page 30 of 61

.%<%. ' ���
� �$��
#.%??(�
9���:
��
$�
�� � 6��
����

.%<%.%� �� �
�����
,����	
�		�	

Whilst building the website for the central node, it was discovered that if an external

file was linked into the web page (e.g. an image or a cascading style sheet (CSS)) and

whilst the linked file would load properly, the first segmented packet of the HTML

file would be re-transmitted repeatedly. A support ticket was then raised with

microchip and 8 days later a response with the solution was given:
����������
�
	
����������������
��	���
��	�� ���!"�����������
�������
�����#����
��������������$%�����	&������'�()�*+	�(+)����,���-���!	�("�,�
	��.!��-���!	�("�,�
!	��+	/+0 01+� 2*,3"�,�	��+�/+0 01+� 2*"4�
��
	
�����������������������������#
��
��������������������������������������5���������6������
������
�������
����
��7�
��������������$%�����	&������'�()�*+	�(+)����,���-���!	�("�,�
	��.!��-���!	�("�,�
!	��+	/+0 01+� 2*,3"�,�	��+�/+0 01+� 2*,3"4�
��
8�6�����
��������������#���������������&��
�������������
 �
�������������������������9��#��������������
������������������������������
�#��
����������
������
������
���������������:�����
�
	
��6��;����������
�
8�����
���	��
�������������

With line 220 of TCP.c updated, this problem disappeared.

 Page 31 of 61

.%<%.%� ���	� ���
= ��
�		�	

This bug involved the application data section of the UDP packet to occasionally be

shifted by 10 bytes. This caused problems with all modules that use UDP (i.e.

announce, DHCP and the custom discovery module written). Because of this,

corrupted DHCP packets would not be interpreted as they were intended, instead

being seen as nonsense or ‘boot request’ packets. In the case of the announce and

discovery modules, the broadcast and response packets would not be interpreted

correctly by the receiving device – the NetBIOS name would be shown with nonsense

data preceding it and the discover packets would not begin with a ‘d’ , hence causing

remote nodes not to reply.

Again, a support ticket was raised with microchip but this time the response was to try

using a new version of the stack (v4.02). Since at this stage of the project there was

not enough time to learn the new intricacies of this version, a decision was made to

try replacing just the UDP.c module. However, the intermittent error still remained.

Had there been more time available to the project at this time, the next step would be

to integrate the project into the new stack version, as it is possible that the error could

be being cause by a module lower down in the stack.

 Page 32 of 61

3333 ���������������
�����
�����
�����
��
,	��	�� � �
���
��#���,� ��
��
,	��	�� � �
���
��#���,� ��
��
,	��	�� � �
���
��#���,� ��
��
,	��	�� � �
���
��#���,� ��
��
�	����
�	����
�	����
�	����

3%�3%�3%�3%� / � �	
� 	����� �
�������	��/ � �	
� 	����� �
�������	��/ � �	
� 	����� �
�������	��/ � �	
� 	����� �
�������	��

3%�%� � 	�����
�

3%�%�%� + �� ,�� �

• Programme code not being verified

• 25MHz crystal not being used, rather a slower internal RC clock showing on

OSC1

3%�%�%� �����
6
+ ������

The first in-circuit debugger / serial programmer was a ‘clone’ of the microchip ICD2

unit manufactured by etekronics, purchased from eBay for £29.00 (inc. shipping).

However, it quickly became apparent that it was not dealing with the 3.3v levels used

on the target board and despite efforts to try and use pull-up resistors, the code would

never validate. This programmer would also apparently not set any of the

configuration bits giving the symptoms of not using the 25MHz crystal, rather using a

much slower internal RC clock. It was eventually decided that a new programmer /

debugger would have to be found. Since the official microchip ICD2 units retail at

£90 and university did not have one, another clone was found on eBay, this time

manufactured by Sivava, which specifically had support for low voltage applications

within its specifications. This unit cost £43.13 (inc. shipping) and has the additional

feature of using USB rather than RS232, allowing faster data transfer. As soon as this

second programmer was plugged in and a programme sent to the target, packets could

be seen being sent / received using wireshark.

 Page 33 of 61

3%�%� � 	�����
�

3%�%�%� + �� ,�� �

• Not accepting DHCP offers

• When using static IP address, packets with invalid checksums being sent out

(and presumably incoming packets failing validation)

3%�%�%� �����
6
+ ������

The TC77 SPI thermal sensor was built onto the first prototype board, expecting there

to be no disruption, as it wasn’ t going to be used until a later stage. However, after

careful testing, it was eventually found that contrary to what the programme

should’ ve been doing, the chip select lines were not correct and the TC77 was

corrupting data on the bus. As a temporary measure, the chip was removed to allow

the basic TCP/IP stack to be tested. As a result, the TCP/IP stack began working

correctly, with valid checksums and DHCP offers being accepted.

As a solution to allow the TC77 to be used, a different method of setting the chip

select lines was employed and another spare pin was used:

Old method:

 PORTBbits.RB5 = 0; // Set RB3 (TC77 CS)

 PORTBbits.RB5 = 1; // Clear RB3 (TC77 CS)

New method:

 PORTB = PORTB | 0b00001000; // Set RB3 (TC77 CS)

 PORTB = PORTB & 0b11110111; // Clear RB3 (TC77 CS)

It is unclear why the old method was not working but using the new method allowed

the TC77 thermal sensor to be used on the same SPI bus as the ENC28J60 ethernet

controller.

These two problems combined caused over two month’ s worth of project time to

effectively be wasted, trying to debug a problem that was assumed to be software,

which was in fact hardware. However, given this knowledge, future students working

with similar 3.3v and/or SPI hardware whom encounter such symptoms, may take

heed of the problems encountered here, hence allowing more time to be spent

developing code, rather than unnecessarily debugging it.

 Page 34 of 61

3%�3%�3%�3%� ���������
�����
� ��	����������
�����
� ��	����������
�����
� ��	����������
�����
� ��	��$�,
�����$�,
�����$�,
�����$�,
����

Using an in-circuit debugger proved very useful, whilst trying to understand how to

use the SPI bus, when talking to the TC77 thermal sensor. It allows real-time reading

and writing of internal registers on the PIC, including registers that control the state of

the I/O ports. However, since the speed of operation is considerably decreased whilst

‘running’ the programme in debug mode, with the TCP/IP stack being such a large

programme, it was impossible to set a checkpoint, let the programme run and wait for

the break to be hit, whilst allowing the programme to otherwise function normally.

Had the TCP/IP stack been configured to use a static IP address, the main loop of the

stack may have eventually been entered in debug mode, except the node would be

unusable, with clients trying to connect simply having their connections terminated

whilst waiting (i.e. ‘timing out’).

Instead, a more useful method of debugging stack modules was to interface the PIC’ s

built in UART to a PC’ s RS232 port, using a MAX233 level converter. Variables

could then be relayed using a simple ‘printf’ command to a virtual terminal allowing

problems to be narrowed down more efficiently. However, using methods like this

can be at a risk, since they will bloat out the programme code and slightly slow down

the operation of the stack if they are not removed once the glitch has been solved.

 Page 35 of 61

3%&3%&3%&3%& ���������
��
����$��
��
����
� 	������������
��
����$��
��
����
� 	������������
��
����$��
��
����
� 	������������
��
����$��
��
����
� 	���

3%&%� (������
��� ,�	��	�

Once it had been realised that the chip select lines were not being driven correctly, it

was relatively easy to read a value from the TC77.

However, the pre-written microchip c functions turned out not to be compatible with

how the TCP/IP stack compiler options were set up, so custom modules were written,

following the instructions on using the SPI from the datasheet.

Once values were being read and converted into a temperature, it was apparent that

they were not particular steady, and jumping around quite a bit, about a central value.

Therefore, a ‘rolling average’ piece of code was written to help solve the problem, by

smoothing out the ripple. An array of 16 numbers (excluding repeat readings, where

the ADC in the thermal sensor had not converted a new value) was filled, with the

average value of the array taken to be passed for conversion to a string.

3%&%� �����

One of the major flaws of the original telnet module supplied in the v4.00RC (beta)

stack was the initialisation of the data pointer for the collection of user and password

details. The solution to this was to set the pointer in the state before that where the

next pressed key.

The second problem was that the backspace key was being accepted as a normal

character, therefore not allowing the user to correct a mistake they may have made

whilst entering their credentials. However, the solution was not as simple as just

decrementing the pointer, as that could easily allow data before the variable to be

corrupted. Therefore a trap to detect whether the data pointer was at the start of the

string needed to be included also. Using this method to read the username was then

used again in the collection of other variables, such as the command line commands.

 Page 36 of 61

3%&%& ���	���
))� (" /
	���6� 	����

Apart from the problem aforementioned in section 4.9.3.4, there was one strange

property of this code that existed to allow it to work. Without an immediately obvious

explanation, it would appear that the function must be in the same file as the function

calling it. The consequence of this meant that a second identical pair of functions

(with different names) needed to be created to allow the telnet module to read and edit

the telnet password as well as maindemo reading the NetBIOS name.

3%&%. �����
�����
��	
�,�����
��
�	��
�� ,�	��	�
��
,���

Once the string acquisition had been mastered in the telnet module, since this module

used the same technique to retrieve the new target temperature set point, any problems

that were being had here could be rectified by referring to the methodology used

within the telnet module.

3%&%3 �����
��	
�$������
��
,���
��
	�� ��
����

The only problem encountered here, was forgetting to handle a data pointer as a static

variable, hence causing random pieces of memory to be written with the received

data, rather than the required string, giving the appearance that the string had not been

updated

3%&%7 C���

Troubles encountered here included:

• Incorrectly formed strings being passed back to the webpage

o Usually due to the string not being parsed correctly causing the end not

to be found, hence HTTP_END_OF_VAR not being passed back.

• When visiting the root, or home page of the server (i.e. the URI ‘/’ , returning

index.htm), the CGI variables would not be replaced

o Hence HTTP module updated to allow .htm files as well as .cgi files to

contain the dynamic variables

 Page 37 of 61

3%&%4 (�� ��
����
�����#�	�

The majority of problems encountered here, were due to the aforementioned UDP

module bug, where the data section of the packet would be occasionally offset by 10

bytes. This caused a lot of time to be spent trying to debug code that was not at fault.

However, there was also the same mistake made as when receiving the remote node’ s

current temperature – certain variables were not being stored a static datatypes,

causing their contents to be lost whilst the processor was completing other stack tasks.

Nevertheless, when a properly formed packet was sent out (i.e. the data contents were

not offset), a reply from the other node built was received and (assuming the response

packet was also correctly formed) its NetBIOS name stored in the array, which could

be viewed through the index.htm page of the web server.

The only remaining problem that did not get solved was the acquisition of the

replying node’ s IP address. Despite the fact that the remote IP address of the replying

node should be stored in the UDP socket information, the information that was

actually relayed back to the discovery module was an IP address of 0.0.0.0. However,

since this module was brought to this level of functionality, so near to the end of this

project’ s timescale, there was not enough time to raise a support ticket with the

microchip support staff to find the correct way, if it is at all possible, to read the

remote node’ s IP address.

 Page 38 of 61

3%.3%.3%.3%. ������
��
������
��
������
��
������
��
�� ,�	��	�
���	���� ,�	��	�
���	���� ,�	��	�
���	���� ,�	��	�
���	��

To test whether the room node was truly capable of controlling the temperature of an

environment, a test-bed platform was constructed using a cardboard box and a 40W

light bulb as an heat source. Since the cardboard box is a lot smaller that an actual

room, the heating from the bulb could show its effect in a smaller timeframe, hence

allowing a faster and more efficient testing strategy to take place.

However, since cardboard is an inflammable substance, care had to be taken not to

leave the test-bed unattended whilst the bulb was switched on.

Below, Figure 8 and Figure 9 show the constructed test-bed:

Figure 8 – Test-bed, with heat source off

Figure 9 – Test-bed, with heat source on

 Page 39 of 61

7777 ������������������������

Item Rough Price (£)

ENC28J60 2.00

PIC18F… 3.50

TC77 0.33

RJ45 Socket 3.00

Mains Relay 2.50

Regulated 3v Power Supply 3.00

PCB 1.00 (guestimate for mass production)

Resistors / Capacitors / Crystals etc 2.00

Casing 1.00 (guestimate for mass production)

Rough Total: 18.33

However, apart from the man-hours spent on this project, there was also money spent

on the following:

• Incompatible ICD2 clone - £29

• 3.3v compatible full speed ICD2 clone - £43.13

• MAX233 chip (TTL to RS232 level converter) – £5.51

• 9-way D Sub connector (minimum pack of 5) – £5.96

• 40W Light bulb, bulb holder, mains cord & plug ~ £10

• Solderless breadboard ~ £15

• Total spent on additional R&D costs: £108.60

Since two room nodes were built and the microchip products were obtained free of

charge through microchip samples, which brings a total cost of the project to £129.60.

 Page 40 of 61

4444 ��

This project has proven itself to be a much bigger challenge than first envisioned.

There were some basic circuit building techniques that were ignored (i.e. building the

TC77 thermal sensor into the circuit, assuming it would not affect the circuit) hence

causing progress to be delayed significantly.

Nevertheless, once hardware problems had been solved (or specific traits recognised

as being due to hardware faults – i.e. bad physical connections causing the ethernet

link to the hub to keep being dropped), the project gave good experience for using the

c programming language for more than simple laboratory exercises. Despite still

making the occasional syntax error (e.g. missing a semi colon from the end of a

command line), by the end of the project it was found to be a lot easier to write

sections of code without having to refer to example code written by other authors,

allowing [DUM94] to stay on the shelf more often.

Another large problem encountered during this project was the importance of time

management – since there was a much larger work load being experienced due to

other final year modules (compared to previous years of the degree course), it became

a struggle at times to set aside time for the project. This is reflected in the

modifications to the Gantt chart made at the second assessment stage, with the

realisation that there would not be enough time to complete the project to a standard

first envisioned at the initial planning stages of the project.

Please see section 11.8 (Appendix H) for the final project gantt chart.

One of the most enjoyable parts of the project, was being able to construct a TCP

server and client, since the author had never had the tools to do this before, using a

PC. Using the microchip TCP/IP stack has brought to life the importance and power

of how using a stacked approach to a networking can make programming new

modules a lot easier, at any level of the stack. An example of this is in one of the

inherent designs of the stack, where the use of several network interfaces are

supported (built in to a PIC, the microchip ENC28J60 and the Realtek RTL8019AS),

where to change which interface is used is a simple case of including a different file in

the project and enabling it through a #define command.

 Page 41 of 61

1111 + ���������
��	
��	$�	
* �	�
�	
(���� � ��������+ ���������
��	
��	$�	
* �	�
�	
(���� � ��������+ ���������
��	
��	$�	
* �	�
�	
(���� � ��������+ ���������
��	
��	$�	
* �	�
�	
(���� � ��������

1%�1%�1%�1%� + ,������
�
$��
�,,�������+ ,������
�
$��
�,,�������+ ,������
�
$��
�,,�������+ ,������
�
$��
�,,�������

• Advanced configuration via web

o Modification of NetBIOS name

o Option to use fixed IP

• Customisable hysteresis for room temperature control

• Real time clock (RTC) integration

o Allowing time / date presetting for different temperature set points for

different rooms

• Data-log facility to see a room’ s temperature history

• Integration of an energy measurement device, to allow the user to see how

much electricity is being used in heating the room

• Interfacing of radiator valve actuators

• Modification of temperature control algorithm to allow variable flow to a

radiator / variable temperature of heater (i.e. use less energy when close to

target temperature)

1%�1%�1%�1%� �,,�������
�
�
����	��
� ��
�$�	��
,	� ���,,�������
�
�
����	��
� ��
�$�	��
,	� ���,,�������
�
�
����	��
� ��
�$�	��
,	� ���,,�������
�
�
����	��
� ��
�$�	��
,	� ��

• University to invest in PICDEM.net 2 board(s) with the ENC28J60 chip

onboard, to eliminate the possibility of bad connections on the prototype board

whilst debugging code.

o Since in-circuit serial programming was so useful to this project, the

product recommendation would be microchip part number DV164006

– MPLAB ICD2 evaluation kit, which includes a PICDEM.net 2 board

• Investigation into the newly released version 4.02 of the microchip TCP/IP

stack

1%&1%&1%&1%& = (�
��	
���	�
,	� ��
������
���	����
��
$��
,	� ��= (�
��	
���	�
,	� ��
������
���	����
��
$��
,	� ��= (�
��	
���	�
,	� ��
������
���	����
��
$��
,	� ��= (�
��	
���	�
,	� ��
������
���	����
��
$��
,	� ��

If you are reading this report, considering whether you wish to carry out a project of a

similar manner, you may be interested to visit http://uni.mcurry.co.uk/FYP/ which I

anticipate to use to put more details about this project, including progress notes,

MPLAB project files, full source c code listings and some pictures.

 Page 42 of 61

<<<< (���	�����(���	�����(���	�����(���	�����

[MC1]
Microchip ENC28J60 data sheet

http://ww1.microchip.com/downloads/en/DeviceDoc/39662b.pdf

[MC2]
Internal EEPROM read and write functions from the microchip knowledge base

http://support2.microchip.com/KBSearch/KB_StdProb.aspx?ID=SQ6UJ9A0004DV

[MC3]
Microchip ‘Using MPLAB® ICD 2 Poster’

http://ww1.microchip.com/downloads/en/DeviceDoc/51265g.pdf

[WP1]
‘Wikipedia’ article on the ISO-OSI 7 Layer Reference Model

http://en.wikipedia.org/w/index.php?title=OSI_model&oldid=125297235

[WP2]
‘Wikipedia’ article on Internet Protocol

http://en.wikipedia.org/w/index.php?title=Internet_Protocol&oldid=125265480

[WP3]
‘Wikipedia’ article on Transmission Control Protocol
http://en.wikipedia.org/w/index.php?title=Transmission_Control_Protocol&oldid=125480812

 Page 43 of 61

�?�?�?�? '������	�,$�'������	�,$�'������	�,$�'������	�,$�

[DUM94] C For Dummies Volume One; GOOKIN, Dan; ISBN 1-878058-78-9

[STA07]
Data and Computer Communications, Eighth Edition; STALLINGS,

William; ISBN 0-13-243310-9

 Page 44 of 61

�������� �,,�����,,�����,,�����,,����������������

��%���%���%���%� �,,����B
�,,����B
�,,����B
�,,����B
����

;;;;
3#
	����
���������
�����
3#
	����
���������
�����
3#
	����
���������
�����
3#
	����
���������
�����

Results from the experimentation on the 5v mains relay for suitability testing with

3.3v microcontroller. The red line indicates the state of the relay contacts and the blue

line shows the coil’ s response.

 Page 45 of 61

��%���%���%���%� �,,����B
�,,����B
�,,����B
�,,����B
''''

;;;;
(���
@ ���
��	���
����	��
(���
@ ���
��	���
����	��
(���
@ ���
��	���
����	��
(���
@ ���
��	���
����	��

S
O

S
I

S
C
K

_
C
S

U
3

PI
C

18
LF

45
J1

0

/M
C

LR
R

A
0

R
A

1
R

A
2

R
A

3
V

dd
co

re
R

A
5

R
E

0
R

E
1

R
E

2
V

dd
V

ss
O

S
C

1
O

S
C

2
R

C
0

R
C

1
R

C
2

R
C

3
R

D
0

R
D

1
R

D
2

R
D

3
R

C
4

R
C

5
R

C
6

R
C

7
R

D
4

R
D

5
R

D
6

R
D

7
V

ss
V

dd
R

B
0

R
B

1
R

B
2

R
B

3
R

B
4

R
B

5
R

B
6

R
B

7

PIC18LF45J10

1 2 3 4 5 6 7 8 9 1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0

2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
0
3
1
3
2
3
3
3
4
3
5
3
6
3
7
3
8
3
9
4
0

V
D

D
3.

3V

G
N

D

X3 H
C

-4
9/

U
_2

5M
H

z

C
4

10
pF

C
5

10
pF

R
4

10
kΩ

C
6

10
nF

C
7

10
nF

U
2

TC
77

S
I/

O
S

C
K

N
C

V
ss

N
C

N
C

/C
S

V
dd

TC77

1 2 3 4
5678

Ti
tle

:
R

oo
m

 N
od

e
D

es
cr

ip
tio

n:
 P

IC
18

LF
45

J1
0

&
 T

C
77

 c
on

ne
ct

io
ns

D
es

ig
ne

r:
M

ic
ha

el
 C

ur
ry

N
ot

e:
A

 P
IC

18
LF

46
85

 is
 b

ei
ng

 u
se

d
in

 p
la

ce
 o

f
th

e
45

J1
0

an
d

ha
s

m
os

tly
 id

en
tic

al
 p

in
-o

ut

Q
1

B
C

10
8B

P

R
9

1.
0k

Ω

J3
1m

V
 0

m
V

J4
TE

S
T_

PT
1

M
ai

ns

J5
TE

S
T_

PT
1

M
ai

ns

J7

M
IN

I-D
IN

3S
R

J1
2

S
oc

ke
t

1 2 3

5 46

 Page 46 of 61

V
D

D
3.

3V

G
N

D

G
N

D
TE

S
T_

PT
1

0V

V
D

D
TE

S
T_

PT
1

3.
3V

X1 LE
D

X2 LE
D

R
1

20
0Ω

R
2

20
0Ω

C
1

10
uF

C
2

1u
F

C
3

1u
F

R
3

2.
32

kΩ

S
O

S
I

S
C
K

_
C
S

E
N

C
28

J6
0

X4 H
C

-4
9/

U
_2

5M
H

z

U
1

D
IP

28

2

1
9

3

1
6

4

1
7

5

2
0

1

1
8

7 1
4

8 1
1

9 1
2

1
0

6 1
3

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

1
5

J2

H
D

R
1X

4J1

H
D

R
1X

4

R
5

49
.9

Ω

R
6

49
.9

Ω

R
7

49
.9

Ω

R
8

49
.9

Ω

C
8

10
0n

F

C
9

10
0n

F

L1 1.
0m

H
Fe

rr
ite

 b
ea

d

M
ag

Ja
ck

 S
I-1

00
21

Ti
tle

:
R

oo
m

 N
od

e
D

es
cr

ip
tio

n:
 E

N
C

28
J6

0
S

P
I e

th
er

ne
t c

on
tr

ol
le

r
co

nn
ec

tio
ns

D
es

ig
ne

r:
 M

ic
ha

el
 C

ur
ry

 Page 47 of 61

��%&��%&��%&��%& �,,����B
�,,����B
�,,����B
�,,����B
����

;;;;
����� ,%�
������
����� ,%�
������
����� ,%�
������
����� ,%�
������

/**

* Module to retrieve temperature from TC77 SPI thermal sensor *

* Programme Information *

* Author: Michael Curry *

* Last Modified: 2007-03-23 *

* Programme Requirements *

* TC77 /CS line connected to RB3 and ENC28J60 /CS line connected to RB4*

* The SPI interface has already been initialised *

* Inputs *

* None *

* Outputs *

* None *

* External Variables *

* strTemp[6] - string value of the temperature in Celsius *

* Additional Programme Information *

* Rolling average taken & repeat values ignored (i.e. if the sigma- *

* delta converter has not produced a new reading) *

**/

#include "p18f4685.h"

extern char strTemp[6];

//extern int tmp,tmp1,rollav[20],countav;

void GetTemp(void)

{

 static int tmp,tmp1,rollav[20],countav=0;

 float Temp;

 int whole, tenth, tens;

 unsigned int units, tenths;

 tmp1 = tmp;

 PORTB = 0b00010000; // CS for TC77 enabled (init comms)

 SSPBUF = 0x00; // Send dummy byte to receive byte

 while(!SSPSTATbits.BF); // Wait for byte to be received

 tmp = SSPBUF * 0x100; // Receive first byte (and shift to upper byte)

 SSPBUF = 0; // Send dummy byte to receive byte

 while(!SSPSTATbits.BF); // Wait for byte to be received

 tmp = tmp | SSPBUF; // Receive second byte

 PORTB = 0b00011000; // CS for TC77 disabled

 tmp >>=3; // Shift out the bottom 3 bits (always 1)

 Page 48 of 61

 if(tmp1 != tmp) // Ignore repeat readings

 {

 rollav[countav] = tmp;

 countav++;

 }

 if(countav == 16)

 countav = 0;

 rollav[16] = (rollav[0] + rollav[1] + rollav[2] + rollav[3])/4;

 rollav[17] = (rollav[4] + rollav[5] + rollav[6] + rollav[7])/4;

 rollav[18] = (rollav[8] + rollav[9] + rollav[10] + rollav[11])/4;

 rollav[19] = (rollav[12] + rollav[13] + rollav[14] + rollav[15])/4;

 rollav[16] = (rollav[16] + rollav[17] + rollav[18] + rollav[19])/4;

 Temp = 0.0625 * rollav[16]; // Convert to a meaningful temperature

 whole = Temp;

 {

 if(whole >= 0)

 strTemp[0] = '+';

 else

 {

 strTemp[0] = '-';

 whole = whole * -1;

 }

 strTemp[1] = Temp / 10 + 48; // Tens

 //units = x - (tens-48) * 10 + 48;

 strTemp[2] = whole % 10 + 48; // Units

 Temp -= whole;

 strTemp[4] = Temp * 10 + 48; // Tenths

 //strTemp[1] = (char) tens;

 //strTemp[2] = (char) units;

 strTemp[3] = '.';

 //strTemp[4] = (char) tenths;

 strTemp[5] = '\0';

 }

 //printf("\r0x%.4x | %s",rollav[16],strTemp); // used in debugging

 return;

}

 Page 49 of 61

��%.��%.��%.��%. �,,����B
�,,����B
�,,����B
�,,����B
����

;;;;
+ ������ ,%�
+ ������ ,%�
+ ������ ,%�
+ ������ ,%�
������
������
������
������

// Send new SetPoint to another node

// Based around the GenericTCPClient module

#include "TCPIP.h"

extern BOOL SendTempStatus;

extern NODE_INFO SendTempServer;

extern char SendTempTemp[32];

extern BYTE ReportedTemp[8];

void SendTemp(void);

void SendTemp(void)

{

 WORD ServerPort = 31337;

 BYTE i;

 static BYTE *StringPtr;

 static TCP_SOCKET MySocket = INVALID_SOCKET;

 static TICK Timer;

 static BYTE Counter;

 static enum _SendTempState

 {

 SM_HOME = 0,

 SM_ARP_START_RESOLVE,

 SM_ARP_RESOLVE,

 SM_SOCKET_OBTAIN,

 SM_SOCKET_OBTAINED,

 SM_PROCESS_RESPONSE,

 SM_DISCONNECT,

 SM_DONE

 } SendTempState = SM_HOME;

 switch(SendTempState)

 {

 case SM_HOME:

 if(SendTempStatus != 0)

 {

 SendTempState++;

 Counter = 0;

 }

 break;

 case SM_ARP_START_RESOLVE:

 if(SendTempStatus == 0)

 SendTempState = SM_DISCONNECT;

 Page 50 of 61

 // Obtain the MAC address associated with the server's IP address (either

direct MAC address on same subnet, or the MAC address of the Gateway machine)

 ARPResolve(&SendTempServer.IPAddr);

 Timer = TickGet();

 SendTempState++;

 break;

 case SM_ARP_RESOLVE:

 if(SendTempStatus == 0)

 SendTempState = SM_DISCONNECT;

 // Wait for the MAC address to finish being obtained

 if(!ARPIsResolved(&SendTempServer.IPAddr, &SendTempServer.MACAddr))

 {

 // Time out if too much time is spent in this state

 if(TickGet()-Timer > 1*TICK_SECOND)

 {

 // Retransmit ARP request

 SendTempState--;

 // Make a note of how many times we've tried to re-transmit

 Counter++;

 }

 if(Counter > 5) // We may want to change this value

 {

 // We've tried and got nowhere - back home we go

 SendTempState = SM_DISCONNECT;

 SendTempStatus = 0;

 // Do we want to tell anything we failed...?

 }

 break;

 }

 Counter = 0;

 SendTempState++;

 case SM_SOCKET_OBTAIN:

 if(SendTempStatus == 0)

 SendTempState = SM_DISCONNECT;

 // Connect a socket to the remote TCP server

 MySocket = TCPConnect(&SendTempServer, ServerPort);

 Counter++;

 if(Counter > 5)

 {

 // We've tried and got nowhere - back home we go

 SendTempState = SM_DISCONNECT;

 SendTempStatus = 0;

 // Do we want to tell anything we failed...?

 break;

 }

 // Abort operation if no TCP sockets are available

 Page 51 of 61

 // If this ever happens, incrementing MAX_TCP_SOCKETS in

 // StackTsk.h may help (at the expense of more global memory

 // resources).

 if(MySocket == INVALID_SOCKET)

 break;

 SendTempState++;

 Timer = TickGet();

 break;

 case SM_SOCKET_OBTAINED:

 if(SendTempStatus == 0)

 SendTempState = SM_DISCONNECT;

 // Wait for the remote server to accept our connection request

 if(!TCPIsConnected(MySocket))

 {

 // Time out if too much time is spent in this state

 if(TickGet()-Timer > 5*TICK_SECOND)

 {

 // Close the socket so it can be used by other modules

 TCPDisconnect(MySocket);

 MySocket = INVALID_SOCKET;

 SendTempState--;

 }

 break;

 }

 Timer = TickGet();

 // Make certain the socket can be written to

 if(!TCPIsPutReady(MySocket))

 break;

 // Place the application protocol data into the transmit buffer.

 {

 StringPtr = SendTempTemp;

 for(i = 0; i < strlen(SendTempTemp); i++)

 {

 TCPPut(MySocket, *StringPtr++);

 }

 TCPPut(MySocket, '\r');

 TCPPut(MySocket, '\n');

 }

 // Send the packet

 TCPFlush(MySocket);

 ReportedTemp[5] = '\0';

 StringPtr = ReportedTemp;

 SendTempState++;

 break;

 case SM_PROCESS_RESPONSE:

 Page 52 of 61

 if(SendTempStatus == 0)

 {

 SendTempState = SM_DISCONNECT;

 break;

 }

 // Check to see if the remote node has disconnected from us or sent us any

application data

 if((!TCPIsConnected(MySocket)) && (StringPtr - ReportedTemp > 5))

 {

 *StringPtr = '\0';

 SendTempState++;

 break;

 }

 if(!TCPIsGetReady(MySocket))

 break;

 // Obtain the server reply

 while(TCPGet(MySocket, &i))

 {

 *StringPtr++ = i;

 }

 break;

 case SM_DISCONNECT:

 // Close the socket so it can be used by other modules

 TCPDisconnect(MySocket);

 MySocket = INVALID_SOCKET;

 SendTempState = SM_DONE;

 case SM_DONE:

 SendTempStatus = FALSE;

 SendTempState = SM_HOME;

 break;

 }

}

 Page 53 of 61

��%3��%3��%3��%3 �,,����B
�,,����B
�,,����B
�,,����B
))))

;;;;
��� ,���	��%�
������
��� ,���	��%�
������
��� ,���	��%�
������
��� ,���	��%�
������

// Temperature Control Stack Module

#include "TCPIP.h"

#include "stdio.h"

#include "stdlib.h"

extern BYTE SetPoint[32];

extern char strTemp[6];

extern BOOL Heat;

void TempControl(void);

void TempControl(void)

{

 signed float Current, Target, Hysteresis=0.5;

 char test[7];

 Current = atof(strTemp);

 Target = atof(SetPoint);

 if(Target > 70.0) // N.B. ENC28J60's temperature limit is 0-70C!

 Target = 70.0; // and by design, a negative value cannot be set

 if (Current > (Target + Hysteresis))

 {

 // Time to switch the heater off

 PORTDbits.RD2 = 0;

 Heat = FALSE;

 }

 else if (Current < (Target - Hysteresis))

 {

 // Time to switch the heater on

 PORTDbits.RD2 = 1;

 Heat = TRUE;

 }

}

 Page 54 of 61

��%7��%7��%7��%7 �,,����B
�,,����B
�,,����B
�,,����B
����

;;;;
+ ����%�
������
+ ����%�
������
+ ����%�
������
+ ����%�
������

/***

 * *

 * Room node socket, based on microchip Telnet Server module *

 * *

 ***/

#include "TCPIP.h"

#include "string.h"

#include "stdlib.h"

#define PORT 31337

extern BYTE SetPoint[32];

extern BYTE strTemp[8];

void MikesTask(void); // Prototype

void MikesTask(void)

{

 BYTE i;

 ROM BYTE *ROMPtr;

 BYTE *RAMPtr;

 static BYTE Data[32];

 static BYTE *DataPtr;

 static TICK Timer;

 static TCP_SOCKET NewSocket = INVALID_SOCKET;

 static NODE_INFO Remote;

 static double temp;

 static enum _MikesState

 {

 SM_HOME = 0,

 SM_Welcome,

 SM_Get_Setpoint,

 SM_Validate_SP,

 SM_Return_Temp,

 SM_DISCONNECT,

 } MikesState = SM_HOME;

 switch(MikesState)

 {

 case SM_HOME:

 Page 55 of 61

 // Connect a socket to the remote TCP server

 NewSocket = TCPListen(PORT);

 // Abort operation if no TCP sockets are available

 // If this ever happens, incrementing MAX_TCP_SOCKETS in

 // StackTsk.h may help (at the expense of more global memory

 // resources).

 if(NewSocket == INVALID_SOCKET)

 break;

 memcpypgm2ram(Data,0x00,32);

 MikesState++;

 Timer = TickGet();

 break;

 case SM_Welcome:

 // Wait for the remote client to connect to us

 if(!TCPIsConnected(NewSocket))

 break;

 Timer = TickGet();

 // Initialise the data pointer BEFORE you are in the next state!

 DataPtr = Data;

 MikesState++;

 case SM_Get_Setpoint:

 if(!TCPIsConnected(NewSocket))

 {

 MikesState = SM_Welcome;

 break;

 }

 // Retrieve the set point

 while(TCPGet(NewSocket, &i))

 {

 if(((i != '\r' && i != '\n') && ((i >= '0' && i <= '9') || i ==

'.')) && (DataPtr != (Data + sizeof(Data))))

 *DataPtr++ = i;

 else if((i == 0x08) && (DataPtr > Data)) // Backspace

 DataPtr--;

 // Stop parsing and advance if linefeed encountered

 if(i == '\r')

 {

 Page 56 of 61

 *DataPtr = '\0'; // End of the string

 MikesState++;

 break;

 }

 }

 break;

 case SM_Validate_SP:

 temp = atof(Data);

 if((Data[0] != 0x00))

 {

 strcpy(SetPoint,Data);

 TCPFlush(NewSocket);

 }

 MikesState++;

 break;

 case SM_Return_Temp:

 if(!TCPIsConnected(NewSocket))

 {

 MikesState = SM_Welcome;

 break;

 }

 TCPPutString(NewSocket, strTemp);

 TCPFlush(NewSocket);

 MikesState++;

 case SM_DISCONNECT:

 // Close the socket so it can be used by other modules

 // For this application, we wish to stay connected, but this

state will still get entered if the remote server decides to disconnect

 TCPDisconnect(NewSocket);

 memcpyram2pgm(0x00,Data,32);

 MikesState = SM_Welcome;

 break;

 }

}

 Page 57 of 61

��%4��%4��%4��%4 �,,����B
�,,����B
�,,����B
�,,����B
����

;;;;
�����#�	%�
������
�����#�	%�
������
�����#�	%�
������
�����#�	%�
������

// Discovery module - discovering which other nodes are out there

//

// Whether I can get this working is another matter though...

//

// Broadcast packet is sent to 255.255.255.255

// Packets sent out in reply are only addressed to the discoverer's IP

// UDP Port is always 30303 (source and destination)

// UDP source port can be different (duh!)

// Received packet will have the first 15 bytes as the NetBIOS name,

// followed by \r\n, then the MAC address followed by \r\n

// Anything after this is the 'other info' field (e.g. DHCP/Power event

occurred)

//

#include "TCPIP.h"

// This must begin with 'D'... I think that is all!

ROM BYTE strDiscover[] = "Discovery: Who is out there?";

typedef struct _MikeNode

{

 IP_ADDR IPAddr;

 BYTE NetBIOSName[16];

} MikeNode;

extern MikeNode DiscoveredNodes[]; //Contents being IPAddr and NetBIOSName

extern BOOL DiscoverNodes;

void DiscoverNodesProcess(void); // prototype

void DiscoverNodesProcess(void)

{

 static UDP_SOCKET MySocket;

 NODE_INFO Remote;

 BYTE i;

 static BYTE x,y,timeout;

 static ROM BYTE *ROMDataPtr;

 static BYTE *DataPtr;

 static TICK Timer;

 static enum {

 SM_DISCOVER_HOME = 0,

 SM_DISCOVER_BROADCAST,

 SM_DISCOVER_LISTEN,

 SM_DISCOVER_SOMETHING,

 Page 58 of 61

 SM_DISCOVER_CLOSE

 } SM_DISCOVER = SM_DISCOVER_HOME;

 switch(SM_DISCOVER)

 {

 case SM_DISCOVER_HOME:

 if(DiscoverNodes != 0)

 SM_DISCOVER++;

 x=0;

 timeout=1;

 break;

 case SM_DISCOVER_BROADCAST:

 if(DiscoverNodes == 0)

 {

 SM_DISCOVER = SM_DISCOVER_CLOSE;

 break;

 }

 // Set the socket's destination to be a broadcast over our IP

 // subnet

 // Set the MAC & IP destination to be a broadcast (all 1s)

 memset(&Remote, 0xFF, sizeof(Remote));

 // Open a UDP socket for outbound transmission

 MySocket = UDPOpen(31337, &Remote, 30303);

 if(MySocket == INVALID_UDP_SOCKET)

 break;

 // Make certain the socket can be written to

 while(!UDPIsPutReady(MySocket));

 // Since I was having so much trouble with the bug in the UDP

 // module, several methods were used to try and get the string

 // be sent out correctly, before realising it was not a fault

 // with my code, rather with the microchip stack!

 // Put the discovery string in the packet

 //DataPtr = strDiscover;

 /*

 ROM BYTE *ROMPtr = "Discovery: Anyone there?";

 while(*ROMPtr)

 {

 UDPPut(*ROMPtr++);

 Page 59 of 61

 }

 }*/

 UDPPut('D');

 UDPPut('i');

 UDPPut('s');

 UDPPut('c');

 UDPPut('o');

 UDPPut('v');

 UDPPut('e');

 UDPPut('r');

 UDPPut('y');

 UDPPut(':');

 UDPPut(' ');

 UDPPut('A');

 UDPPut('n');

 UDPPut('y');

 UDPPut('o');

 UDPPut('n');

 UDPPut('e');

 UDPPut(' ');

 UDPPut('t');

 UDPPut('h');

 UDPPut('e');

 UDPPut('r');

 UDPPut('e');

 UDPPut('?');

 // Send the packet

 UDPFlush();

 Timer = TickGet();

 y=0;

 SM_DISCOVER++;

 break;

 case SM_DISCOVER_LISTEN:

 if((DiscoverNodes == 0) || (TickGet()-Timer > 10*TICK_SECOND))

 {

 SM_DISCOVER = SM_DISCOVER_CLOSE;

 break;

 }

 // Do nothing if no data is waiting

 if(!UDPIsGetReady(MySocket))

 return;

 Page 60 of 61

 // Progress to the next state if something is RX

 SM_DISCOVER++;

 case SM_DISCOVER_SOMETHING:

 if((DiscoverNodes == 0) || (TickGet()-Timer > 10*TICK_SECOND))

 {

 SM_DISCOVER = SM_DISCOVER_CLOSE;

 break;

 }

 DataPtr = DiscoveredNodes[y].NetBIOSName;

 for(x=0;x<15;x++)

 {

 //while(!UDPIsGetReady(MySocket));

 UDPGet(&i);

 //*DataPtr++ = i;

 DiscoveredNodes[y].NetBIOSName[x] = i;

 }

 DiscoveredNodes[y].NetBIOSName[16] = '\0';

 DiscoveredNodes[y].IPAddr.Val = Remote.IPAddr.Val;

 y++;

 UDPDiscard();

 SM_DISCOVER--;

 break;

 case SM_DISCOVER_CLOSE:

 DiscoverNodes = 0;

 if(y < 5)

 {

 for(y=y;y<5;y++) // Fill unused space with blanks

 {

 BYTE strNotFound[] = "No Node Found";

 strcpy(DiscoveredNodes[y].NetBIOSName,strNotFound);

 DiscoveredNodes[y].IPAddr.Val = 0xffffffff;

 }

 }

 SM_DISCOVER = SM_DISCOVER_HOME;

 UDPClose(MySocket);

 break;

 }

}

 Page 61 of 61

��%1��%1��%1��%1 �,,����B
�,,����B
�,,����B
�,,����B
CCCC

;;;;
� 	� ��
���
�$�	
� 	� ��
���
�$�	
� 	� ��
���
�$�	
� 	� ��
���
�$�	

